Reconstructing Properties of Galactic Dark Matter Particles by Using Direct Detection Data

Chung-Lin Shan

Xinjiang Astronomical Observatory, Chinese Academy of Sciences
May 15, 2013
Review
Direct Dark Matter detection

Model-independent data analyses
Motivation
Reconstruction of the WIMP velocity distribution
Determination of the WIMP mass

AMIDAS package and website

Summary
Direct Dark Matter detection
Dark Matter searches

DM should have **small, but non-zero** interactions with SM matter.

⇒ Three different ways to detect DM particles

- **Colliders**
 - \(p, e \) to DM
 - DM to \(p, e^+ \)

- **Indirect detection**
 - DM to e, \(\nu_\mu, \gamma \)
 - e\(^+\), \(\bar{p}, \bar{D} \)

- **Direct detection**
 - DM to DM\(^{('), (*)}\)
 - q to q
Review

- **Existence of Dark Matter (DM)**
 - **Clusters of galaxies**
 - [Coma cluster of galaxies; F. Zwicky (1933)]
 - **Bullet Cluster**
 - [http://chandra.harvard.edu/photo/2006/1e0657/]
 - **Abundances of D, 3He, 4He**
 - [Review of Particle Physics 2006]

- **Galactic rotation curves**

- **CMBR anisotropy**
 - [NASA/WMAP Science Team, WMAP5 (2008)]

- **SNe Ia observations at high-z**
 - [Supernova Cosmology Project 2010]
Review

- Majority of **Cold Dark Matter (CDM)**
 - moved *non-relativistically* when galaxies could just start to form (matter-radiation decoupling time).
 - would form some **small galactic scale structures** due to their relatively slower velocities (*botton-up*).

 ⇧

- **Hot Dark Matter (HDM)**
 - moved *relativistically* at the matter-radiation decoupling time.
 - would cover great(er) distances and form some **very large scale structures** (*top-down*).

- **Warm Dark Matter (WDM)**

- **Dark baryons**
Review

- Weakly Interacting Massive Particles (WIMPs) χ
 - Dark Matter relic density
 $$ \Omega_\chi h^2 \sim \frac{3 \times 10^{-27} \text{ cm}^3/\text{s}}{\langle \sigma_{\text{anni}} \nu \rangle} = 0.112 \pm 0.006 $$
 $$ \Rightarrow \langle \sigma_{\text{anni}} \nu \rangle \sim 3 \times 10^{-26} \text{ cm}^3/\text{s} $$
 $$ \Rightarrow \text{weak interaction} $$

 - Gravitational, EM, strong interactions
 - Mass ranges roughly between 10 GeV and a few TeV.
 $$ v_\chi \sim 10^{-3} \text{c} \Rightarrow Q \sim \left(\frac{10^{-6}}{2} \right) m_\chi $$
 $$ \Leftrightarrow \text{Gravitino, axion, axino} $$
Review

- Direct DM detection (elastic WIMP-nucleus scattering)
 - The event rate depends on
 - the WIMP density near the Earth ρ_0
 - the WIMP-nucleus cross sections σ_{0}^{SI} and σ_{0}^{SD}
 - the WIMP mass m_χ
 - the velocity distribution of incident WIMPs $f_1(v)$
 - The WIMP-nucleus cross section is about $10^{-2} \sim 10^{-6}$ pb
 - the optimistic expected event rate is $\sim 10^{-3}$ events/kg-day
 - but could be < 1 event/ton-yr
 - An exponential-like recoil energy spectrum
 - Most events would be with energies less than 50 keV.
 - Typical background events due to cosmic rays and ambient radioactivity: signals $\approx \mathcal{O}(10^6) : 1$
Review

- Direct DM detection (elastic WIMP-nucleus scattering)
 - Semiconductor/scintillator detectors
 - Cryogenic
 - Ge, Si, NaI(Tl), CsI(Tl), CaWO₄, TeO₂
 - Liquid noble gas detectors
 - Single-phase (liquid)
 - Dual-phase (gas-liquid)
 - Xe, Ar, Ne
 - Superheated droplet/gas detectors
 - Time-projection chamber (TPC)
 - Directional (head-tail) information
 - Xe-CS₂, CF₄, C₃F₈, C₄F₁₀, CF₃I, C₂ClF₅
 - For nuclei with $A \geq 30$, the SI interaction ($\propto A^2$) almost always dominates over the SD interaction.
Review

- Direct DM detection (elastic WIMP-nucleus scattering)
 - Time-dependence of the velocity distribution
 - Annual modulation of the event rate

- Diurnal modulation of the event rate
 - Directionality of the WIMP wind
 - Shielding of the incident WIMP flux by the Earth
Model-independent data analyses
Motivation

- **Differential event rate for elastic WIMP-nucleus scattering**

\[
\frac{dR}{dQ} = \mathcal{A} F^2(Q) \int_{v_{\text{min}}}^{v_{\text{max}}} \left[\frac{f_1(v)}{v} \right] dv
\]

Here

\[v_{\text{min}} = \alpha \sqrt{Q}\]

is the minimal incoming velocity of incident WIMPs that can deposit the recoil energy \(Q\) in the detector,

\[\mathcal{A} \equiv \frac{\rho_0 \sigma_0}{2 m_\chi m_{r,N}^2}, \quad \alpha \equiv \sqrt{\frac{m_N}{2 m_{r,N}^2}}, \quad m_{r,N} = \frac{m_\chi m_N}{m_\chi + m_N}\]

- \(\rho_0\): WIMP density near the Earth
- \(\sigma_0\): total cross section ignoring the form factor suppression
- \(F(Q)\): elastic nuclear form factor
- \(f_1(v)\): one-dimensional velocity distribution of halo WIMPs
Reconstructing Properties of Galactic Dark Matter Particles by Using Direct Detection Data

- Model-independent data analyses
- Reconstruction of the WIMP velocity distribution

Reconstruction of the WIMP velocity distribution

- Normalized one-dimensional WIMP velocity distribution function

\[
f_1(v) = N \left\{ -2Q \cdot \frac{d}{dQ} \left[\frac{1}{F^2(Q)} \left(\frac{dR}{dQ} \right) \right] \right\}_{Q = v^2/\alpha^2}
\]

\[
N = \frac{2}{\alpha} \left\{ \int_0^{\infty} \frac{1}{\sqrt{Q}} \left[\frac{1}{F^2(Q)} \left(\frac{dR}{dQ} \right) \right] dQ \right\}^{-1}
\]

- Moments of the velocity distribution function

\[
\langle v^n \rangle = N(Q_{\text{thre}}) \left(\frac{\alpha^{n+1}}{2} \right) \left[\frac{2Q_{\text{thre}}^{(n+1)/2}}{F^2(Q_{\text{thre}})} \left(\frac{dR}{dQ} \right) \right]_{Q = Q_{\text{thre}}} + (n + 1) l_n(Q_{\text{thre}})
\]

\[
N(Q_{\text{thre}}) = \frac{2}{\alpha} \left[\frac{2Q_{\text{thre}}^{1/2}}{F^2(Q_{\text{thre}})} \left(\frac{dR}{dQ} \right) \right]_{Q = Q_{\text{thre}}}^{-1} + l_0(Q_{\text{thre}})
\]

\[
l_n(Q_{\text{thre}}) = \int_{Q_{\text{thre}}}^{\infty} Q^{(n-1)/2} \left[\frac{1}{F^2(Q)} \left(\frac{dR}{dQ} \right) \right] dQ
\]

[M. Drees and CLS, JCAP 0706, 011 (2007)]
Reconstruction of the WIMP velocity distribution

- **Ansatz**: the measured recoil spectrum in the nth Q-bin

\[
\left(\frac{dR}{dQ} \right)_{\text{expt}, \ Q \simeq Q_n} \equiv r_n e^{k_n (Q - Q_{s,n})}
\]

\[r_n \equiv \frac{N_n}{b_n} \]

- Logarithmic slope and shifted point in the nth Q-bin

\[
Q - Q_n |_{n} \equiv \frac{1}{N_n} \sum_{i=1}^{N_n} (Q_{n,i} - Q_n) = \left(\frac{b_n}{2} \right) \coth \left(\frac{k_n b_n}{2} \right) - \frac{1}{k_n}
\]

\[
Q_{s,n} = Q_n + \frac{1}{k_n} \ln \left[\frac{\sinh(k_n b_n/2)}{k_n b_n/2} \right]
\]

- Reconstructing the one-dimensional WIMP velocity distribution

\[
f_1(v_{s,n}) = \mathcal{N} \left[\frac{2 Q_{s,n} r_n}{F^2(Q_{s,n})} \right] \left[\frac{1}{dQ} \ln F^2(Q) \bigg|_{Q=Q_{s,n}} - k_n \right]
\]

\[
\mathcal{N} = \frac{2}{\alpha} \left[\sum_{a} \frac{1}{\sqrt{Q_a} F^2(Q_a)} \right]^{-1}
\]

\[v_{s,n} = \alpha \sqrt{Q_{s,n}} \]

[M. Drees and CLS, JCAP 0706, 011 (2007)]
Reconstruction of the WIMP velocity distribution

- Reconstructed $f_{1,\text{rec}}(v_{s,n})$
 - ^{76}Ge, 500 events, 5 bins, up to 3 bins per window

\[\chi^2 / \text{dof} = 0.73 \]

Determination of the WIMP mass

- Estimating the moments of the WIMP velocity distribution

\[\langle v^n \rangle = \alpha^n \left[\frac{2Q_{\text{min}}^{1/2} r_{\text{min}}}{F^2(Q_{\text{min}})} + l_0 \right]^{-1} \left[\frac{2Q_{\text{min}}^{(n+1)/2} r_{\text{min}}}{F^2(Q_{\text{min}})} + (n + 1) l_n \right] \]

\[l_n = \sum_a \frac{Q_a^{(n-1)/2}}{F^2(Q_a)} \]

\[r_{\text{min}} = \left(\frac{dR}{dQ} \right)_{\text{expt, } Q=Q_{\text{min}}} = r_1 e^{k_1(Q_{\text{min}} - Q_{s,1})} \]

[Drees and CLS, JCAP 0706, 011 (2007)]

- Determining the WIMP mass

\[m_\chi |_{\langle v^n \rangle} = \frac{\sqrt{m_\chi m_\gamma} - m_\chi R_n}{R_n - \sqrt{m_\chi/m_\gamma}} \]

\[R_n = \left[\frac{2Q_{\text{min},X}^{(n+1)/2} r_{\text{min},X} / F_X^2(Q_{\text{min},X}) + (n + 1) l_n,X}{2Q_{\text{min},X}^{1/2} r_{\text{min},X} / F_X^2(Q_{\text{min},X}) + l_0,X} \right]^{1/n} \]

\[(X \rightarrow Y)^{-1} \quad (n \neq 0) \]

[CLS and M. Drees, arXiv:0710.4296]

- Assuming a dominant SI WIMP-nucleus interaction

\[m_\chi |_{\sigma} = \left(\frac{m_\chi / m_\gamma}{} \right)^{5/2} \frac{m_\gamma - m_\chi R_\sigma}{R_\sigma - (m_\chi / m_\gamma)^{5/2}} \]

\[R_\sigma = \frac{E_\gamma}{E_X} \left[\frac{2Q_{\text{min},X}^{1/2} r_{\text{min},X} / F_X^2(Q_{\text{min},X}) + l_0,X}{2Q_{\text{min},Y}^{1/2} r_{\text{min},Y} / F_Y^2(Q_{\text{min},Y}) + l_0,Y} \right] \]

[M. Drees and CLS, JCAP 0806, 012 (2008)]
Reconstructing Properties of Galactic Dark Matter Particles by Using Direct Detection Data

- Model-independent data analyses
- Determination of the WIMP mass

Determination of the WIMP mass

- χ^2-fitting

$$\chi^2(m_\chi) = \sum_{i,j} (f_{i,X} - f_{i,Y}) C_{ij}^{-1} (f_{j,X} - f_{j,Y})$$

where

$$f_{i,X} = \alpha_X^i \left[\frac{2Q_{\min,X}^{(i+1)/2} r_{\min,X} / F_X^2(Q_{\min,X} + (i + 1)l_{i,X})}{2Q_{\min,X}^{1/2} r_{\min,X} / F_X^2(Q_{\min,X} + l_{0,X})} \right] \left(\frac{1}{300 \text{ km/s}} \right)^i$$

$$f_{n_{\max}+1,X} = \mathcal{E}_X \left[\frac{A_X^2}{2Q_{\min,X}^{1/2} r_{\min,X} / F_X^2(Q_{\min,X} + l_{0,X})} \right] \left(\frac{\sqrt{m_X}}{m_X + m_X} \right)$$

$$C_{ij} = \text{cov} (f_{i,X}, f_{j,X}) + \text{cov} (f_{i,Y}, f_{j,Y})$$

- Algorithmic Q_{\max} matching

$$Q_{\max,Y} = \left(\frac{\alpha_X}{\alpha_Y} \right)^2 Q_{\max,X} \quad (\nu_{\text{cut}} = \alpha \sqrt{Q_{\max}})$$

[M. Drees and CLS, JCAP 0806, 012 (2008)]
Determination of the WIMP mass

- Reconstructed $m_{\chi, \text{rec}}$

 $(^{28}\text{Si} + ^{76}\text{Ge}, Q_{\text{max}} < 100 \text{ keV}, 2 \times 50 \text{ events})$

\[\text{[M. Drees and CLS, JCAP 0806, 012 (2008)]} \]
AMIDAS package and website
AMIDAS package and website

- **A Model-Independent Data Analysis System** for direct Dark Matter detection experiments
 - DAMNED Dark Matter Web Tool (ILIAS Project)
 - http://pisrv0.pit.physik.uni-tuebingen.de/darkmatter/amidas/
 - TiResearch (Taiwan interactive Research)
 - Online interactive simulation/data analysis system
 - Full Monte Carlo simulations
 - Theoretical estimations
 - Real/user-uploaded data analyses
Currently running and further projects

- Planned improvements (AMIDAS-II)
 - More well-motivated velocity distributions
 - More more-realistic form factors for each single target
 - Connection to other simulation/data analysis packages for (in)direct detections
 - User account/setup database system

- Currently running and further projects
 - Data analysis in the inelastic scattering framework
 - Reconstructing modeled velocity distribution functions
 - Analyzing data with directional information
Summary
Summary

- **Direct Dark Matter detection** searches for WIMP particles.

- Direct detection **experiments** aim to observe WIMP-nucleus scattering signals.

- Our data analysis procedures could extract WIMP properties **model-independently** by combining data sets with different detector materials without knowing the local density, the velocity distribution, and the mass/couplings on nucleons of halo WIMPs priorly.

- Once two or more experiments with different target nuclei observe positive WIMP signals, we could determine:
 - WIMP mass \(m_\chi \)
 - 1-D velocity distribution \(f_1(v) \)
 - SI WIMP-proton coupling \(|f_p|^2 \)
 - ratio between the SD WIMP-nucleon couplings \(a_n/a_p \)
 - ratios between the SD and SI WIMP-nucleon cross sections \(\sigma^{SD}_{\chi(p,n)}/\sigma^{SI}_{\chi p} \)
Summary

- These information will help us to
 - distinguish the (neutralino) LSP from the LKP
 - [G. Bertone et al., PRL 99, 151301 (2007); V. Barger et al., PRD 78, 056007 (2008);
 G. Belanger et al., PRD 79, 015008 (2009); R. C. Cotta et al., NJP 11, 105026 (2009)]
 - identify the particle produced at colliders to be indeed halo WIMPs
 - predict the WIMP annihilation cross section $\langle \sigma_{\text{anni}} \rangle$

- Furthermore, we could
 - determine the local WIMP density ρ_0
 - predict the indirect detection event rate $d\Phi/dE$
 - test our understanding of the early Universe
 -
Thank you very much for your attention!