Introduction to Direct Dark Matter Detection Phenomenology

Chung-Lin Shan

School of Physics, Xinjiang University
May 8, 2013
Introduction to Direct Dark Matter Detection Phenomenology

Outline

REVIEW
Direct Dark Matter detection

MODEL-INDEPENDENT DATA ANALYSES
Motivation
Reconstruction of the WIMP velocity distribution
Determination of the WIMP mass
Estimation of the SI WIMP-nucleon coupling
Determinations of ratios of WIMP-nucleon cross sections

EFFECTS OF RESIDUE BACKGROUND EVENTS

AMIDAS PACKAGE AND WEBSITE

SUMMARY
References: direct Dark Matter detection phenomenology

- Velocity distribution

References: direct Dark Matter detection phenomenology

- Mass/SI cross section (maximum likelihood/Bayesian analysis)
References: direct Dark Matter detection phenomenology

- SD cross sections/couplings
References: direct Dark Matter detection phenomenology

- SI and SD cross sections

References: direct Dark Matter detection phenomenology

- **Directional information**

References: our works

- Model-independent data analyses
References: our works

- **Effects of residue background events**
Some words about simulations and phenomenology
Some words about simulations and phenomenology

- In the 1930s Enrico Fermi made some numerical experiments that would now be called Monte Carlo calculations.

 [Monte Carlo Methods, M. H. Kalos and P. A. Whitlock, Chap. 1, p. 3]

- The name Monte Carlo was applied to a class of mathematical methods first by scientists working on the development of nuclear weapons in Los Alamos in the 1940s.

 [Monte Carlo Methods, M. H. Kalos and P. A. Whitlock, Chap. 1, p. 1]

- Relationship between theory, experiment, and numerical simulation: each is distinct, but each is strongly connected to the other two.

Some words about simulations and phenomenology

- Research "triangle"

Theory:
- model building,
- phenomenon predicting

Phenomenology:
- data analyzing,
- model constraining/distinguishing

Experiment:
- detection techniques,
- data taking/analyzing

Simulation:
- data analyzing techniques,
- numerical programming
Some words about simulations and phenomenology

- The process of preparing programs for a digital computer is especially attractive because it not only can be economically and scientifically rewarding, it can also be an aesthetic experience much like composing poetry or music.

 [Donald E. Knuth]

- Numerical methods are an art rather than a science, and acquired as a set of somewhat disconnected methods, clever tricks, and recipes, not as a gloriously complete subject.

- Some of the things I have learnt the hard way through painful experience are given here, in the hope of softening the blow when you meet the same problems.

 [Statistics, B. J. Barlow, Chap. 8, p. 180]
Direct Dark Matter detection
Dark Matter searches

DM should have **small, but non-zero** interactions with SM matter.

⇒ Three different ways to detect DM particles

- **Colliders**
 - $p, e \rightarrow DM, \bar{DM}$

- **Indirect detection**
 - $DM \rightarrow e^+, \bar{p}, \bar{D}$

- **Direct detection**
 - $DM \rightarrow q, \bar{q}$
We start with ...

- direct DM detection (elastic WIMP-nucleus scattering)

 - The event rate depends on
 - the WIMP density near the Earth ρ_0
 - the WIMP-nucleus cross sections σ_0^{SI} and σ_0^{SD}
 - the WIMP mass m_χ
 - the velocity distribution of incident WIMPs $f_1(v)$

 - The WIMP-nucleus cross section is about $10^{-2} \sim 10^{-6}$ pb
 - the optimistic expected event rate is $\sim 10^{-3}$ events/kg-day
 - but could be $< 1 \text{ event/ton-yr}$

 - An exponential-like recoil energy spectrum
 - Most events would be with energies less than 50 keV.

 - Typical background events due to cosmic rays and ambient radioactivity: signals $\approx \mathcal{O}(10^6) : 1$
We start with ...

- direct detection signals
 - Ionization (charges)
 - Scintillation (light)
 - Heat (phonons)

- Quenching factor
 - Nuclear recoil relative efficiency
 - Measured (electron equivalent) recoil energy keV_{ee}
 \iff true nuclear recoil energy keV_r

- Raw/total mass/exposure
 \iff fiducial mass/exposure

- Combinations of two signals:
 \implies event-by-event background rejection
We start with ...

- **direct detection detectors**

 - **Semiconductor/scintillator detectors**
 - Cryogenic
 - Ge, Si, NaI(Tl), CsI(Tl), CaWO₄, TeO₂

 - **Liquid noble gas detectors**
 - Single-phase (liquid)
 - Dual-phase (gas-liquid)
 - Xe, Ar, Ne

 - **Superheated droplet/gas detectors**
 - Time-projection chamber (TPC)
 - Directional (head-tail) information
 - Xe-CS₂, CF₄, C₃F₈, C₄F₁₀, CF₃I, C₂ClF₅

- For nuclei with \(A \geq 30 \), the SI interaction \((\propto A^2) \) almost always dominates over the SD interaction.
We start with ...

- direct detection experiments
 - Minimal and maximal cut-off energies $Q_{\text{min, max}}$, $Q_{\text{min, max}, \text{kin}}$
 - Quenching factor $keV_{ee}/keV_r = q(Q)$, energy smearing and resolution
 - Detector materials: Ge ⇐⇒ Si, Xe ⇐⇒ Ar, F ⇐⇒ I
 - Background (discrimination)
 - Excluded/constrained areas on $\sigma_{\chi(p/n)}^{\text{SI/SD}}$ vs. m_χ planes

We start with ...

- direct detection theory/phenomenology
 - (One-dimensional) velocity distribution function $f(v)$ or $f_1(v)$
 - Local DM density ρ_0
 - Escape and the 1-D maximal cut-off velocities v_{esc} and v_{max}
 - WIMP-nucleon(proton/neutron) couplings
 - SI scalar couplings $f_{(p,n)}$
 - SD axial-vector couplings $a_{(p,n)}$
 - SI vector couplings $b_{(p,n)}$
 - (WIMP-nucleus) scattering form factors $F_{\text{SI}}^2(Q)$ and $F_{\text{SD}}^2(Q)$
 - WIMP mass m_χ (and mass splitting δ)
We start with ...

- Direct detection theory/phenomenology/experiments
 - **Time-dependence** of the velocity distribution
 - **Annual modulation** of the event rate

- **Diurnal modulation** of the event rate
 - Directionality of the WIMP wind
 - Shielding of the incident WIMP flux by the Earth

We start with ...

- **direct detection theory**

 - Predicting **WIMP-nucleon couplings/cross sections**

 ![Graph 1](image1)
 ![Graph 2](image2)

 [V. Barger, W. Y. Keung, and G. Shaughnessy, PRD 78, 056007 (2008)]

 - Exclusion limits on the (predicted) **WIMP-nucleon cross sections**

 ![Graph 3](image3)
 ![Graph 4](image4)

 [http://dmtools.berkeley.edu/limitplots/; ZEPLIN Collab., PRL 103, 151302 (2009)]

 - Predicting **velocity distribution function**
We start with ...

- direct detection phenomenology
 - Developing data analysis procedures
 - Constraining/distinguishing particle/astronomical halo models
 - Reconstructing WIMP properties
 - Being combination with and complementarity of indirect DM detection and collider experiments.
 - Packages for Monte-Carlo simulations and/or (real) data analysis
We start with ...

- **direct detection phenomenology**
 - **Exclusion limits on** $\sigma^{SI/SD}_{\chi(p/n)}$ **vs.** m_χ **planes**
 - S. Yellin
 - **Constraints on** SD WIMP-nucleon couplings
 - D. R. Tovey et al.
 - T. A. Girard and F. Giuliani
 - **Velocity distribution**
 - A. H. G. Peter
 - L. E. Strigari et al.
 - **Maximum likelihood (ML) analysis**
 - A. M. Green and B. Moore
 - **Bayesian + ML analysis**
 - M. Pato et al.
 - J. Billard, F. Mayet, D. Santos et al. (MIMAC Collab.)
 - **Model-independent analysis using the total event rate**
 - P. J. Fox et al.
Model-independent data analyses
Motivation

- **Differential event rate for elastic WIMP-nucleus scattering**

\[
\frac{dR}{dQ} = A F^2(Q) \int_{v_{\text{min}}}^{v_{\text{max}}} \frac{f_1(v)}{v} \, dv
\]

Here

\[
v_{\text{min}} = \alpha \sqrt{Q}
\]

is the minimal incoming velocity of incident WIMPs that can deposit the recoil energy \(Q \) in the detector,

\[
A \equiv \frac{\rho_0 \sigma_0}{2m_\chi m_{r,N}^2}, \quad \alpha \equiv \sqrt{\frac{m_N}{2m_{r,N}^2}}, \quad m_{r,N} = \frac{m_\chi m_N}{m_\chi + m_N}
\]

- \(\rho_0 \): WIMP density near the Earth
- \(\sigma_0 \): total cross section ignoring the form factor suppression
- \(F(Q) \): elastic nuclear form factor
- \(f_1(v) \): one-dimensional velocity distribution of halo WIMPs
Motivation

- Differential event rate for elastic WIMP-nucleus scattering

\[
\frac{dR}{dQ} = \mathcal{A}F^2(Q) \int_{v_{\text{min}}}^{v_{\text{max}}} \left[\frac{f_1(v)}{v} \right] dv
\]

Here

\[v_{\text{min}} = \alpha \sqrt{Q}\]

is the minimal incoming velocity of incident WIMPs that can deposit the recoil energy \(Q\) in the detector,

\[
\mathcal{A} \equiv \frac{\rho_0 \sigma_0}{2m_\chi m_{r,N}^2}, \quad \alpha \equiv \sqrt{\frac{m_N}{2m_{r,N}^2}}, \quad m_{r,N} = \frac{m_\chi m_N}{m_\chi + m_N}
\]

\(\rho_0\): WIMP density near the Earth
\(\sigma_0\): total cross section ignoring the form factor suppression
\(F(Q)\): elastic nuclear form factor
\(f_1(v)\): one-dimensional velocity distribution of halo WIMPs
Reconstruction of the WIMP velocity distribution

- Normalized one-dimensional WIMP velocity distribution function

\[f_1(v) = N \left\{ -2Q \cdot \frac{d}{dQ} \left[\frac{1}{F^2(Q)} \left(\frac{dR}{dQ} \right) \right] \right\}_{Q=v^2/\alpha^2} \]

\[N = \frac{2}{\alpha} \left\{ \int_0^\infty \frac{1}{\sqrt{Q}} \left[\frac{1}{F^2(Q)} \left(\frac{dR}{dQ} \right) \right] dQ \right\}^{-1} \]

- Moments of the velocity distribution function

\[\langle v^n \rangle = N(Q_{\text{thre}}) \left(\frac{\alpha^{n+1}}{2} \right) \left[\frac{2Q_{\text{thre}}^{(n+1)/2}}{F^2(Q_{\text{thre}})} \left(\frac{dR}{dQ} \right) \right]_{Q=Q_{\text{thre}}} + (n+1)I_n(Q_{\text{thre}}) \]

\[N(Q_{\text{thre}}) = \frac{2}{\alpha} \left[\frac{2Q_{\text{thre}}^{1/2}}{F^2(Q_{\text{thre}})} \left(\frac{dR}{dQ} \right) \right]_{Q=Q_{\text{thre}}}^{-1} + I_0(Q_{\text{thre}}) \]

\[I_n(Q_{\text{thre}}) = \int_{Q_{\text{thre}}}^\infty Q^{(n-1)/2} \left[\frac{1}{F^2(Q)} \left(\frac{dR}{dQ} \right) \right] dQ \]

[M. Drees and CLS, JCAP 0706, 011 (2007)]
Reconstruction of the WIMP velocity distribution

- **Ansatz:** the measured recoil spectrum in the \(n \)th \(Q \)-bin

\[
\left(\frac{dR}{dQ} \right)_{\text{expt}, \ Q \approx Q_n} = r_n e^{k_n(Q - Q_{s,n})} \quad \quad r_n \equiv \frac{N_n}{b_n}
\]

- **Logarithmic slope and shifted point** in the \(n \)th \(Q \)-bin

\[
Q - Q_n|_n \equiv \frac{1}{N_n} \sum_{i=1}^{N_n} (Q_{n,i} - Q_n) = \left(\frac{b_n}{2} \right) \coth \left(\frac{k_n b_n}{2} \right) - \frac{1}{k_n}
\]

\[
Q_{s,n} = Q_n + \frac{1}{k_n} \ln \left[\frac{\sinh(k_n b_n/2)}{k_n b_n/2} \right]
\]

- **Reconstructing the one-dimensional WIMP velocity distribution**

\[
f_1(v_{s,n}) = \mathcal{N} \left[\frac{2Q_{s,n} r_n}{F^2(Q_{s,n})} \right] \left[\frac{d}{dQ} \ln F^2(Q) \right]_{Q = Q_{s,n}} - k_n
\]

\[
\mathcal{N} = \frac{2}{\alpha} \left[\sum_a \frac{1}{\sqrt{Q_a} F^2(Q_a)} \right]^{-1} \quad \quad v_{s,n} = \alpha \sqrt{Q_{s,n}}
\]

[M. Drees and CLS, JCAP 0706, 011 (2007)]
Reconstruction of the WIMP velocity distribution

- Reconstructed $f_{1,\text{rec}}(v_s,n)$
 $(^{76}\text{Ge}, \text{500 events}, 5 \text{ bins}, \text{up to 3 bins per window})$

![Graph showing reconstruction of WIMP velocity distribution]

$\chi^2/\text{dof} = 0.73$

- [M. Drees and CLS, JCAP 0706, 011 (2007)]
Determination of the WIMP mass

- Estimating the moments of the WIMP velocity distribution

\[
\langle v^n \rangle = \alpha^n \left[\frac{2Q_{\text{min}}^{1/2} r_{\text{min}}}{F^2(Q_{\text{min}})} + I_0 \right]^{-1} \left[\frac{2Q_{\text{min}}^{(n+1)/2} r_{\text{min}}}{F^2(Q_{\text{min}})} + (n+1)I_n \right]
\]

\[
I_n = \sum_a \frac{Q_a^{(n-1)/2}}{F^2(Q_a)}
\]

\[
r_{\text{min}} = \left(\frac{dR}{dQ} \right)_{\text{expt, } Q=Q_{\text{min}}} = r_1 e^{k_1(Q_{\text{min}}-Q_s,1)}
\]

- Determining the WIMP mass

\[
m_{\chi}\big|_{\langle v^n \rangle} = \left(\frac{m_{\chi} m_y}{m_{\chi} m_y} - m_{\chi} R_n \right) \frac{R_n - \sqrt{m_{\chi}/m_y}}}{R_n - \sqrt{m_{\chi}/m_y}}
\]

\[
R_n = \left[\frac{2Q_{\text{min},X}^{(n+1)/2} r_{\text{min},X}/F_X^2(Q_{\text{min},X}) + (n+1)I_{n,X}}{2Q_{\text{min},X}^{1/2} r_{\text{min},X}/F_X^2(Q_{\text{min},X}) + I_{0,X}} \right]^{1/n}
\]

\[X \rightarrow Y\]^{-1} \quad (n \neq 0)

- Assuming a dominant SI WIMP-nucleus interaction

\[
m_{\chi}\big|_{\sigma} = \left(\frac{m_{\chi} m_y}{m_{\chi} m_y} \right)^{5/2} m_y - m_{\chi} R_{\sigma} \frac{R_{\sigma} - (m_{\chi} m_y)^{5/2}}{R_{\sigma} - (m_{\chi} m_y)^{5/2}}
\]

\[
R_{\sigma} = \frac{\varepsilon_Y}{\varepsilon_X} \left[\frac{2Q_{\text{min},X}^{1/2} r_{\text{min},X}/F_X^2(Q_{\text{min},X}) + I_{0,X}}{2Q_{\text{min},Y}^{1/2} r_{\text{min},Y}/F_Y^2(Q_{\text{min},Y}) + I_{0,Y}} \right]
\]

[CLS and M. Drees, arXiv:0710.4296]
Determination of the WIMP mass

- χ^2-fitting

$$\chi^2(m_\chi) = \sum_{i,j} (f_{i,x} - f_{i,y}) C_{ij}^{-1} (f_{j,x} - f_{j,y})$$

where

$$f_{i,x} = \alpha^i_X \left[\frac{2Q_{\min,x}^{(i+1)/2} r_{\min,x} / F_X^2(Q_{\min,x}) + (i + 1)I_{i,x}}{2Q_{\min,x}^{1/2} r_{\min,x} / F_X^2(Q_{\min,x}) + I_{0,x}} \right] \left(\frac{1}{300 \text{ km/s}} \right)^i$$

$$f_{n_{\max} + 1,x} = \mathcal{E}_X \left[\frac{A_X^2}{2Q_{\min,x}^{1/2} r_{\min,x} / F_X^2(Q_{\min,x}) + I_{0,x}} \right] \left(\frac{\sqrt{m_X}}{m_\chi + m_X} \right)$$

$$C_{ij} = \text{cov}(f_{i,x}, f_{j,x}) + \text{cov}(f_{i,y}, f_{j,y})$$

- Algorithmic Q_{\max} matching

$$Q_{\max,Y} = \left(\frac{\alpha_X}{\alpha_Y} \right)^2 Q_{\max,X} \quad (v_{\text{cut}} = \alpha \sqrt{Q_{\max}})$$

[Ref: M. Drees and CLS, JCAP 0806, 012 (2008)]
Determination of the WIMP mass

- Reconstructed $m_{\chi,\text{rec}}$
 $(^{28}\text{Si} + ^{76}\text{Ge}, Q_{\text{max}} < 100 \text{ keV}, 2 \times 50 \text{ events})$

![Graph showing the relationship between $m_{\chi,\text{rec}}$ and $m_{\chi,\text{in}}$.](image)

[M. Drees and CLS, JCAP 0806, 012 (2008)]
Estimation of the SI WIMP–nucleon coupling

- **Spin-independent (SI) WIMP–nucleus cross section**

\[
\sigma_0^{\text{SI}} = \left(\frac{4}{\pi} \right) m_{r,N}^2 \left[Z f_p + (A - Z) f_n \right]^2 \approx \left(\frac{4}{\pi} \right) m_{r,N}^2 A^2 |f_p|^2 = A^2 \left(\frac{m_{r,N}}{m_{r,p}} \right)^2 \sigma_{\chi p}^{\text{SI}}
\]

\[
\sigma_{\chi p}^{\text{SI}} = \left(\frac{4}{\pi} \right) m_{r,p}^2 |f_p|^2
\]

\(f_{(p,n)} \): effective SI WIMP–proton/neutron couplings

- **Rewriting the integral of \(f_1(v)/v \) over \(v \)**

\[
\left(\frac{dR}{dQ} \right)_{\text{expt, } Q=Q_{\text{min}}} = \frac{E \rho_0 A^2}{2 m_{\chi} m_{r,p}^2} \left[\left(\frac{4}{\pi} \right) m_{r,p}^2 |f_p|^2 \right] F^2(Q_{\text{min}}) \left\{ m_{r,N} \sqrt{\frac{2}{m_N}} \left[\frac{2 Q_{\text{min}}^{1/2} r_{\text{min}}}{F^2(Q_{\text{min}})} + I_0 \right] - 1 \left[\frac{2 r_{\text{min}}}{F^2(Q_{\text{min}})} \right] \right\}
\]

- **Estimating the SI WIMP–nucleon coupling**

\[
|f_p|^2 = \frac{1}{\rho_0} \left[\frac{\pi}{4 \sqrt{2}} \left(\frac{1}{E_Z A_Z^2 \sqrt{m_Z}} \right) \right] \left[\frac{2 Q_{\text{min}}^{1/2} r_{\text{min}} Z}{F_Z^2(Q_{\text{min}} Z)} + I_0 Z \right] (m_{\chi} + m_Z)
\]

Estimation of the SI WIMP-nucleon coupling

- Estimating the SI WIMP-nucleon coupling

\[|f_p|^2 = \frac{1}{\rho_0} \left[\frac{\pi}{4\sqrt{2}} \left(\frac{1}{\mathcal{E} A^2 \sqrt{m_Z}} \right) \right] \left[\frac{2Q_{\min,z}^1 r_{\min,z}}{F_Z^2(Q_{\min,z})} + I_{0,z} \right] (m_\chi + m_z) \]

- \[|f_p|^2 \ (^{76}\text{Ge} (+^{28}\text{Si} + ^{76}\text{Ge}), \ Q_{\max} < 100 \ \text{keV}, \ \sigma_{\chi p}^{\text{SI}} = 10^{-8} \ \text{pb}, \ 1(3) \times 50 \ \text{events}) \]

[CLS, arXiv:1103.0481]
Estimation of the SI WIMP-nucleon coupling

- Estimating the SI WIMP-nucleon coupling

\[|f_p|^2 = \frac{1}{\rho_0} \left[\frac{\pi}{4\sqrt{2}} \left(\frac{1}{E_Z A_Z^2 \sqrt{m_Z}} \right) \right] \left[\frac{2Q_{\text{min},Z} F_{\text{min},Z}}{F_Z^2(Q_{\text{min},Z})} + I_{0,Z} \right] (m_\chi + m_Z) \]

- \(|f_p|^2\) vs. \(m_\chi\) \((^{76}\text{Ge} + ^{28}\text{Si} + ^{76}\text{Ge})\), \(Q_{\text{max}} < 100 \text{ keV}\), \(\sigma_{X\chi}^{\text{SI}} = 10^{-8} \text{ pb}\), \(1(3) \times 50 \text{ events}\)

[CLS, arXiv:1103.0481]
Determination of the ratio of SD WIMP-nucleon couplings

- **Spin-dependent (SD) WIMP-nucleus cross section**

\[
\sigma_0^{SD} = \left(\frac{32}{\pi} \right) G_F^2 m_{r,N}^2 \left(\frac{J + 1}{J} \right) \left[\langle S_p \rangle a_p + \langle S_n \rangle a_n \right]^2
\]

\[
\sigma_{\chi p/n}^{SD} = \left(\frac{32}{\pi} \right) G_F^2 m_{r,p/n}^2 \cdot \left(\frac{3}{4} \right) a_{p/n}^2
\]

- J: total nuclear spin
- \(\langle S_{(p,n)} \rangle \): expectation values of the proton/neutron group spin
- \(a_{(p,n)} \): effective SD WIMP-proton/neutron couplings

- **Determining the ratio of two SD WIMP-nucleon couplings**

\[
\left(\frac{a_n}{a_p} \right)^{SD}_{\pm,n} = - \frac{\langle S_p \rangle_x \pm \langle S_p \rangle_y R_{J,n}}{\langle S_n \rangle_x \pm \langle S_n \rangle_y R_{J,n}}
\]

\[
R_{J,n} \equiv \left[\left(\frac{J_X}{J_X + 1} \right) \left(\frac{J_Y + 1}{J_Y} \right) \frac{R_{\sigma}}{R_n} \right]^{1/2} \quad (n \neq 0)
\]

[M. Drees and CLS, arXiv:0903.3300]
Introduction to Direct Dark Matter Detection Phenomenology
- Model-independent data analyses
- Determinations of ratios of WIMP-nucleon cross sections

Determination of the ratio of SD WIMP-nucleon couplings

- Reconstructed \((a_n/a_p)^{SD}_{rec,1}\)

\[^{73}\text{Ge} + ^{37}\text{Cl}, Q_{\text{min}} > 5 \text{ keV}, Q_{\text{max}} < 100 \text{ keV}, 2 \times 50 \text{ events, } m_\chi = 100 \text{ GeV or } a_n/a_p = 0.7\]

[CLS, JCAP 1107, 005 (2011)]
Determination of the ratio of SD WIMP–nucleon couplings

- Reconstructed \((a_n/a_p)^{SD,1}\)

\((^{19}\text{F} + ^{127}\text{I}, Q_{\text{min}} > 5 \text{ keV}, Q_{\text{max}} < 100 \text{ keV}, 2 \times 50 \text{ events, } m_\chi = 100 \text{ GeV or } a_n/a_p = 0.7)\)

[CLS, JCAP 1107, 005 (2011)]
Determinations of ratios of WIMP-nucleon cross sections

- Differential rate for combined SI and SD cross sections

\[
\frac{dR}{dQ}_{\text{expt}, Q=Q_{\text{min}}} = \mathcal{E} \left(\frac{\rho_0 \sigma_{SI}^0}{2m \chi m_N^2} \right) \left[F_{SI}^2(Q) + \left(\frac{\sigma_{SD}^0}{\sigma_{SI}^0} \right) C_p F_{SD}^2(Q) \right] \int_{v_{\text{min}}}^{v_{\text{max}}} \left[\frac{f_1(v)}{v} \right] dv
\]

\[
C_p \equiv \frac{4}{3} \left(J + 1 \right) \left[\langle S_p \rangle + \left(\frac{a_n}{a_p} \right) \langle S_n \rangle \right]^2
\]

- Determining the ratio of two SI WIMP-proton cross sections

\[
\frac{\sigma_{SD}^0}{\sigma_{SI}^0} = \frac{F_{SI,Y}^2(Q_{\text{min}},Y) R_{m,XY} - F_{SI,X}^2(Q_{\text{min}},X)}{C_p X F_{SD,X}^2(Q_{\text{min}},X) - C_p Y F_{SD,Y}^2(Q_{\text{min}},Y) R_{m,XY}}
\]

\[
R_{m,XY} \equiv \left(\frac{r_{\text{min},X}}{\varepsilon_X} \right) \left(\frac{\varepsilon_Y}{r_{\text{min},Y}} \right) \left(\frac{m_Y}{m_X} \right)^2
\]

- Determining the ratio of two SD WIMP-nucleon couplings

\[
\left(\frac{a_n}{a_p} \right)^{\text{SI+SD}} = - \left(c_p X s_{n/p,X} - c_p Y s_{n/p,Y} \right) \pm \sqrt{c_p X c_p Y \left| s_{n/p,X} - s_{n/p,Y} \right|^2} \left(c_p X s_{n/p,X}^2 - c_p Y s_{n/p,Y}^2 \right)
\]

\[
c_p X \equiv \frac{4}{3} \left(J_X + 1 \right) \left[\langle S_p \rangle X \right]^2 \left[F_{SI,Z}^2(Q_{\text{min}},Z) R_{m,YZ} - F_{SI,Y}^2(Q_{\text{min}},Y) \right] F_{SD,X}^2(Q_{\text{min}},X)
\]

[M. Drees and CLS, arXiv:0903.3300]
Determinations of ratios of WIMP-nucleon cross sections

- Reconstructed $(a_n/a_p)^{\text{SI+SD}}_{\text{rec}}$ vs. $(a_n/a_p)^{\text{SD}}_{\text{rec,1}}$

\[(^{19}\text{F} + ^{127}\text{I} + ^{28}\text{Si}, Q_{\text{min}} > 5 \text{ keV}, Q_{\text{max}} < 100 \text{ keV}, 3 \times 50 \text{ events, } \sigma_{\chi p}^{\text{SI}} = 10^{-8}/10^{-10} \text{ pb, } a_p = 0.1, m_\chi = 100 \text{ GeV}) \]
Determinations of ratios of WIMP-nucleon cross sections

- Reconstructed \(\left(\sigma_{\chi p}^{SD} / \sigma_{\chi p}^{SI} \right)_{\text{rec}} \) and \(\left(\sigma_{\chi n}^{SD} / \sigma_{\chi p}^{SI} \right)_{\text{rec}} \)

\(^{19}\text{F} + ^{127}\text{I} + ^{28}\text{Si} \) vs. \(^{23}\text{Na}/^{131}\text{Xe} + ^{76}\text{Ge} \), \(Q_{\text{min}} > 5 \text{ keV}, Q_{\text{max}} < 100 \text{ keV}, \sigma_{\chi p}^{SI} = 10^{-8} \text{ pb}, a_p = 0.1, m_\chi = 100 \text{ GeV}, 3/2 \times 50 \text{ events} \)

[CLS, JCAP 1107, 005 (2011)]

C.-L. Shan

XJU, May 8, 2013
Effects of residue background events
Effects of residue background events

- Background spectrum
 - Target-dependent exponential background spectrum
 \[\left(\frac{dR}{dQ} \right)_{bg,ex} = \exp \left(-\frac{Q/\text{keV}}{A^{0.6}} \right) \]
 - Constant background spectrum

- Background window
 - Entire experimental possible energy range (0 – 100 keV)
 - Low energy range (0 – 50 keV)
 - High energy range (50 – 100 keV)

- (Naively) simulate
 - only a few residue background events
 - induced by two or more different sources
AMIDAS package and website
AMIDAS package and website

- **A Model-Independent Data Analysis System** for direct Dark Matter detection experiments

 - DAMNED Dark Matter Web Tool (ILIAS Project)
 - http://pisrv0.pit.physik.uni-tuebingen.de/darkmatter/amidas/
 - [CLS, arXiv:0909.1459, 0910.1971]

 - TiResearch (Taiwan interactive Research)

 - Online interactive simulation/data analysis system

 - Full Monte Carlo simulations

 - Theoretical estimations

 - Real/user-uploaded data analyses
Currently running and further projects

- Planned improvements (AMIDAS-II)
 - More well-motivated velocity distributions
 - More more-realistic form factors for each single target
 - Connection to other simulation/data analysis packages for (in)direct detections
 - Dark Matter Les Houches Accord (DLHA)
 [G. Brooijmans et al., arXiv:1203.1488]
 - User account/setup database system

- Currently running and further projects
 - Data analysis in the inelastic scattering framework
 - Reconstructing modeled velocity distribution functions
 - Analyzing data with directional information
Summary
Summary

- **Direct Dark Matter detection** searches for WIMP particles.

- Direct detection **experiments** aim to observe WIMP-nucleus scattering signals.

- **Theoretical models** predict WIMP candidates.

- **Phenomenological data analyses** would exclude/constrain the parameter space and even extract WIMP properties.

- Our data analysis procedures could extract WIMP properties model-independently by combining data sets with different detector materials.
Summary

- These information will help us to
 - distinguish the (neutralino) LSP from the LKP
 [G. Bertone et al., PRL 99, 151301 (2007); V. Barger et al., PRD 78, 056007 (2008);
 G. Belanger et al., PRD 79, 015008 (2009); R. C. Cotta et al., NJP 11, 105026 (2009)]
 - identify the particle produced at colliders to be indeed halo WIMPs
 - predict the WIMP annihilation cross section $\langle \sigma_{\text{anni}}v \rangle$

- Furthermore, we could
 - determine the local WIMP density ρ_0
 - predict the indirect detection event rate $d\Phi/dE$
 - test our understanding of the early Universe
 -
Thank you very much for your attention!