The integration of Ground-Motion Prediction Equations and Ground Motion Simulations

Y.T. Yen, M.C. Hsieh, P.S. Lin

Disaster Prevention Technology Research Center, Sinotech Engineering Consultants, Inc., Taipei, Taiwan
Flowchart of Probability Seismic Hazard Analysis

Flowchart:

1. **Source**
 - Active faults
 - Area sources
 - Subduction sources

2. **Recurrence**
 - Earthquake occurrence rate
 - Max. Earthquake
 - Earthquake catalog analysis

3. **Ground Motion**
 - Site class
 - Crustal & Subduction
 - Period of response acceleration

4. **Hazard**
 - Total median hazard
 - Contribution of every source to hazard

Notes:
- $f(r|m)$: Probability density function of distance and magnitude
- r: distance
- m: magnitude
- T: period
- $Sa(T)$: Acceleration response factor

Legend:
- 1. Exponential Model
- 2. Characteristic Model
- 3. Number of quakes vs. magnitude
- Contribution Hazard
- Structural Period $T = 1.0$ sec
Why simulation is useful to GMPE?

- To understand some of the underlying physical parameters that control observed ground motion and their variability
- To evaluate the effect level of GMPEs that are not well represented by the empirical database
- To address questions for model comparisons between various region with difference of data completeness
- Final goal is that we can improve the results of PSHA
Ground Motion Prediction Equation (GMPE)

An equation that can be used to predict the possible ground-motion value during future earthquakes.

Limitation:
1. A fault plane
2. Uncertainty for a lack of observed data
Significant concern: lack of observed seismic data
Application of the GMPEs to Listric Fault

What the basic condition is the similar ground motion level from GMPEs and Simulations for the Ref. case.

A scheme of listric fault

Dip: 70°/25°

Approach setting
Introduction of the EXSIM method

Extended to finite-fault model:

• Subfaults are considered as point sources
• Rupture front arrival excites subfaults
• Time series of subfaults are properly delayed and summed in time domain
• Random slip model as a realization
Fault geometry and parameters setting

- Hypocenter is located at the center of each plane (two rupture types)
- Preserved total moment of two segments is same as reference case

M1 (75, 25) M2 (60, 20)
Ground motion character of the listric fault

- SIM1: propagation from shallow to deep
- SIM2: propagation from deep to shallow
- Mean spectra are considered from 30 realizations

M1 (75, 25)
Sketch for comparison between Response spectra of simulation and GMPE

Variables are only the dipping angles of a lystirc fault.
Simulation Model defined - $M(\text{Dip}_1, \text{Dip}_2, \text{Depth}_{\text{seis}})$

- $M(70,25,10)$
- $M(70,25,15)$
- $M(70,25,20)$
- $M(60,25,10)$
- $M(60,25,15)$
- $M(60,25,20)$
Input parameters of four GMPEs

Four GMPEs used in the base case of HCT

<table>
<thead>
<tr>
<th>Parameter</th>
<th>ASK14</th>
<th>BSSA14</th>
<th>CB14</th>
<th>CY14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magnitude</td>
<td>M_w</td>
<td>M_w</td>
<td>M_w</td>
<td>M_w</td>
</tr>
<tr>
<td>Top of Rupture (km)</td>
<td>Z_{tor}</td>
<td>-</td>
<td>Z_{tor}</td>
<td>Z_{tor}</td>
</tr>
<tr>
<td>Style of faulting</td>
<td>F_{RV,F_{NM},SS}</td>
<td>U, F_{RV,F_{NM},SS}</td>
<td>F_{RV,F_{NM},SS}</td>
<td>F_{RV,F_{NM},SS}</td>
</tr>
<tr>
<td>Dip (deg)</td>
<td>Dip</td>
<td>-</td>
<td>Dip</td>
<td>-</td>
</tr>
<tr>
<td>Down-dip rupture width (km)</td>
<td>W</td>
<td>-</td>
<td>W</td>
<td>-</td>
</tr>
<tr>
<td>Closest distance to rupture (km)</td>
<td>R_{rup}</td>
<td>-</td>
<td>R_{rup}</td>
<td>R_{rup}</td>
</tr>
<tr>
<td>Hor. dist. to surface proj. (km)</td>
<td>R_{JB}</td>
<td>R_{JB}</td>
<td>R_{JB}</td>
<td>R_{JB}</td>
</tr>
<tr>
<td>Hor. dist. from edge of rupture (km)</td>
<td>R_{x}</td>
<td>-</td>
<td>R_{x}</td>
<td>R_{x}</td>
</tr>
<tr>
<td>Hor. dist. off end of rupture (km)</td>
<td>R_{y0}</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Hanging wall model</td>
<td>F_{HW}</td>
<td>(R_{JB})</td>
<td>F_{HW}</td>
<td>F_{HW}</td>
</tr>
<tr>
<td>V_{S30} (m/s)</td>
<td>V_{S30}</td>
<td>V_{S30}</td>
<td>V_{S30}</td>
<td>V_{S30}</td>
</tr>
<tr>
<td>V_{S30} for reference rock (m/s)</td>
<td>1100</td>
<td>760</td>
<td>1100</td>
<td>1130</td>
</tr>
<tr>
<td>Depth to Vs (km)</td>
<td>Z_{1.0}</td>
<td>Z_{1.0} (dz_{1.0})</td>
<td>Z_{2.5}</td>
<td>Z_{1.0}</td>
</tr>
<tr>
<td>Hypocentral depth (km)</td>
<td>-</td>
<td>-</td>
<td>Z_{hyp}</td>
<td>-</td>
</tr>
<tr>
<td>Directivity term</td>
<td>-</td>
<td>-</td>
<td>(Z_{hyp})</td>
<td>DDPP</td>
</tr>
<tr>
<td>Regional variations</td>
<td>Region</td>
<td>Region</td>
<td>Region</td>
<td>Region</td>
</tr>
<tr>
<td>Aftershock factor</td>
<td>F_{AS}</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
M(70,25,15)
A suggestion model to Listric Fault

A scheme of listric fault

Dip: 70°/25°
Needs for use of ground motion simulations for engineering application

- **Validation**: Quantitative evaluation of the accuracy of the simulation methods
- **Robustness**: Similar results using different simulation methods
- **Transparency**: Someone other than the author can run the simulation
- **Reproducible Results**: Fixed versions of simulation software that are readily available
- **Easy operation for professional experts**: Efficiency and universality in practical applications

(Extended from Abrahamson in the 15th WCEE, 2012)
Conclusion

- Physics-based ground motion simulation is a powerfully alternative way to help to figure out what trend of ground motion.

- We have successfully carried out ground motion simulations to justify GMPEs for the uses of seismic hazard assessment:
 - Implementation of GMPEs in the case of listric-fault
 - Address reduction factor of the edge effect from off-end subduction-zone earthquakes in large magnitude

- Limitation of various simulation methods should be identified carefully for applying their results into evaluation of GMPEs.

- Further GMPE improvements, simulation techniques could consider for the directivity effect, fault geometry effect (hanging-wall and footwall), etc.
Thank you for your attention
Background

• The U.S. Actions Following Fukushima Daiichi Accident
 – The Nuclear Regulatory Commission (NRC) established the NTTF in response to the Fukushima Daiichi nuclear power plant accident.
 – The NTTF provided a series of recommendations which resulted in a 10 CFR 50.54(f) letter to all U.S. plants.

• The Post-Fukushima Implementations in Taiwan
 – The Atomic Energy Council (AEC) required Taiwan Power Company (TPC) should follow NTTF 2.1: Seismic to reevaluate seismic hazard and review the seismic design basis of nuclear facilities in Taiwan.

• TPC Launched “Seismic Reevaluation of Nuclear Facilities” Project to:
 – Develop Hazard Input Document for Taiwan using SSHAC Level 3 Methodology
 – Develop GMRS of Nuclear Facilities and Study Sites in Taiwan
SSHAC Processes - II

- Gather data and information from literature
- TI makes assessments including uncertainty
- TI confers with members of technical community to understand alternative viewpoints
- Workshops are held to discuss:
 - Significant issues and available data
 - Alternative hypotheses
 - Feedback and documentation
- Participatory peer review of process and technical
- TI team responsible for technical assessments
- Expert panel responsible for making technical assessments
- TFI facilitates expert interactions and aggregates expert assessments

(Coppersmith, 2012)
M(70,25,10)
M(70,25,20)