tlsb
劉宗霖

助理教授
國立成功大學
生物資訊與訊息傳遞所

701台南市大學路1號

Email:tsunglin@mail.ncku.edu.tw
電話:06-2085163
傳真:06-2083663
辦公室:自強校區儀器大樓 9 樓 909 室
Dr. Tsunglin Liu

Assitant Professor
Institute of Bioinformatics and Biosignal Transduction
National Cheng-Kung University (NCKU)

1 University Rd. Tainan, Taiwan, 701, R.O.C

Email: tsunglin@mail.ncku.edu.tw
Tel: 886-6-2085163
Fax: 886-6-2083663
Office:


個人學經歷 / Curriculum Vitae】【研究興趣 / Research Interests】【研究著作 / Publications


個人學經歷

2010.02-  present:成功大學生物資訊與訊息傳遞所助理教授
2008.08-2010.02:中研院生物多樣性中心博士後研究員
2006.08-2008.07:美國加州大學聖塔巴巴拉分校腦神經科學研究所博士後研究員
2000.09-2006.03:美國俄亥俄州立大學物理所博士
1999.07-2000.08:中研院原子與分子科學研究所研究助理
1993.09-1997.06:國立台灣大學物理系學士

Curriculum Vitae

2010.02-  present : Assitant Professor, Institute of Bioinformatics and Biosignal Transduction, National Cheng-Kung University (NCKU)
2008.08-2010.02 : Postdoctoral Fellow, Biodiverisity Research Center, Academia Sinica, Taiwan
2006.08-2008.07 : Postdoctoral Fellow, Neuroscience Research Institute, UCSB, U.S.A.
2000.09-2006.03 : Ph.D. in Physics, OSU, U.S.A.
1999.07-2000.08 : Research Assistant, Institute of Atomic and Molecular Sciences, Academia Sinica, Taiwan
1993.09-1997.06 : B.Sc., Physics, National Taiwan University (NTU), Taiwan



研究興趣

我的研究專注於兩個主題:基因體組序和 microRNA 基因調控。目前我的工作完全屬於計算方面,但我有和一些實驗學家合作來驗證計算的預測。

基因體定序和組序是邁向了解生物遺傳物質,DNA,重要的第一步。三十多年前,Sanger 的方法開創了大量基因定序的時代,而一直到近幾年才有新一代所謂 NGS 技術的出現,比如說 454 和 Solexa。NGS 定序的資料量遠遠超過傳統 Sanger 的方法,而且比較便宜,但是 NGS 產生的序列長度也比傳統 Sanger 的方法短的多,這些 NGS 新的資料特性帶給基因組序新的挑戰。我發展新的計算方法來把 NGS 的資料組成更完整的基因體,其中一個題目是結合 454 和 Solexa 的資料,這個方法整合了兩種定序方式的優點:454 的序列長度較長而 Solexa 的資料量較多。另一個正在進行的題目是把 Solexa 產生的序列延長,利用一種所謂填補雙端定序間隙的方式。這將會大大提升單獨使用 Solexa 資料就能提高組序完成度的機會,而且非常實用因為 Solexa 的資料比較便宜。除了基因體組序外,我也對下游的基因體分析有興趣。目前我有參與中研院李文雄院士領導的許多物種定序的計畫。

MicroRNAs 是不轉譯成蛋白質的短 RNAs,他們會抑制標的 mRNAs 的表現,許多 都已被證實會調控動物生長和維持的過程。第一個 microRNA 在 1993 年被發現,但直到三年前才有一個 microRNA,miR-34,被發現在 p53 癌症抑制網路中佔有一個重要的地位。這引起我尋找是否有更多 microRNAs 也參與在癌症抑制網路的興趣,主要想利用兩種資訊來作預測:1) microRNAs 和已知在 p53 網路裡基因的演化守恆,2) 這些基因的表現量。背後的構想為如果一個 microRNA 和它標的基因在演化上越守恆,那他們越有可能會一起調控某個生理過程。這些演化上守恆的 microRNAs 如果在癌症細胞中的表現量也和在正常細胞中不同,那它們就更有可能參與在癌症抑制的網路裡。我將會和一些實驗學家合作來驗證我找到的一些可能會調控癌症細 胞生長的 microRNAs。

Research Interests

My research focus on two major topics: genome assembly and microRNA regulation.  Currently, I do pure computational works on both fields, and collaborate with some scientists who perform experiments.

Genome sequencing and assembly are the fundamentals toward understanding the secrets behind DNA.  High throughput DNA sequencing was pioneered by Sanger and coworkers more than 30 years ago.  Only recently, a series of the so-called next generation sequencing (NGS) have emerged, e.g., 454 and Solexa.  The sequence data, called reads, by NGS are much more high throughput and less costly compared with Sanger sequencing.  However, the NGS reads are shorter (~400 bp in 454) or much shorter (~75 bp in Solexa) than the Sanger reads (800~1000 bp).  These NGS data introduce new computational challenges to genome assembly.  I develop scripts to achieve a better assembly with the NGS data.  One specific topic is to combine 454 with Solexa data.  This approach integrates the advantages from both platforms, where 454 reads are longer, and Solexa reads are more abundant.  Another on-going topic is to construct longer Solexa reads by filling in the gaps between the so-called paired end reads.  This will significantly increase the possibility of a much better assembly with Solexa data alone, which is cheaper than the 454 data.  I am also interested in the whole genome analysis after its assembly.  Currently, I am involved in several sequencing projects in a sequencing core lead by Dr. Wen-Hsiung Li in Academia Sinica. 

MicroRNAs are non-coding small RNAs that suppress the translation of the target mRNAs.  The expression of various microRNAs have been shown to regulate animal development and other biological processes.  Not until recently has a microRNA, miR-34, been found to occupy an important position in the p53 tumor suppressor network.  This motivates me to search for other microRNAs that play a role in the p53 network.  I combine the information from the conservation and expression of microRNAs and genes in the p53 network to predict good microRNA candidates.  The idea is that the more conserved the relation between a microRNA and its target gene, the more likely such a regulation has a functional impact.  The confidence of these candidates are enhanced if the microRNA has been found to be dysregulated in certain tumor samples.  I will collaborate with some scientists for validating the microRNA candidates that I found in the p53 network.



研究著作 / Publications